ACOUSTIC CONTROL SYSTEMS

Ultrasonic transducer S1823

DATASHEET

Intended use

Dry point contact ultrasonic transducers S1823 with wave type switching and a are used to perform ultrasonic inspections of various non-metallic materials and products to determine their physical and mechanical properties.

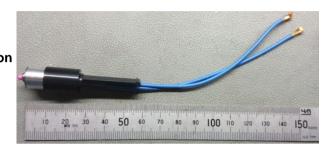
The transducers are regularly used as a transmitter-receiver couple.

Main technical specifications

Type of transducer: Dry-point-contact Type of generated wave mode: Longitudinal or

shear-horizontal
Couplant-free operation

400 V


Nominal frequency: 60 kHz

Electric capacity of the piezoelectric element: 1.400 ± 200 pF

Maximum excitation pulse voltage, V:

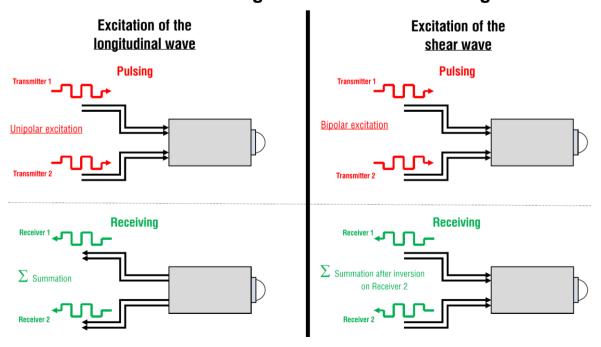
Connector type: OSMT or LEMO00
Overall dimensions: 11x22.6 mm

Weight: 14 gr

Measurement conditions and equipment used

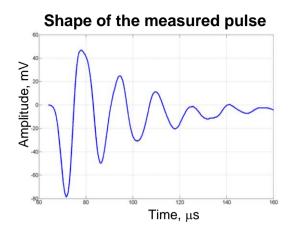
Temperature 25℃, rel. humidity 43%

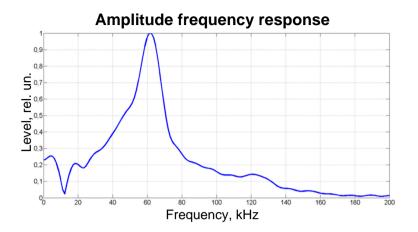
Special properties:


The method of passing of the ultrasonic waves through a tapered sample from fluoroplastic is used. The tested transducer operates in the transmission mode. As an ultrasonic pulse receiver, a broad-band single-crystal piezoelectric transducer with the operating frequency 5 MHz and effective aperture 10 mm is used.

Generator transmitting signal: half-sine video pulse with 200 V amplitude and 2.0 mcs duration time at the -20 dB level from the maximum.

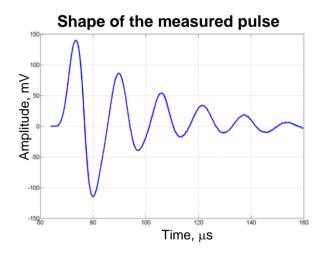
Receiving path parameters: the integrating amplifier AKS310 is used. The amplification is 400 at 100 kHz frequency, the band 2 is 250 kHz and the input impedance is 40 kOhm.

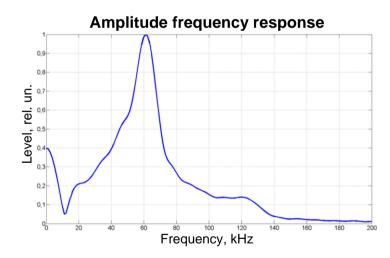

In the longitudinal wave generation and receiving mode, the piezoelectric elements of the tested transducer are connected in parallel and co-phasal. In the shear wave mode, they are connected antiphasal via the transformer with the interrupted ferrite core, the transformation ratio is 1:1 and the inductivity of each coil is 20 mH.


Excitation scheme for longitudinal and shear wave generation

ACOUSTIC CONTROL SYSTEMS

Measured characteristics in the longitudinal wave mode





Signal parameters

Maximum half-wave amplitude of the pulse, V	AL _{max} = 0.078	Lower band frequency at the - 3 dB level, kHz	FL ₁ = 55.0
Pulse duration at the -14 dB, msec	$TL_{14dB} = 52.6$	Upper band frequency at the - 3 dB level, kHz	FL ₂ = 67.8
Maximum spectrum frequency, kHz	FL _{max} = 62.3	Average band frequency at the -3 dB level, kHz	FL _c = 61.4
Relative frequency band at the -3 dB level, %	PL 3dB = 21	Average compound band frequency at the -3 dB level, kHz	FL _g = 61.1

Measured characteristics in the shear wave mode

Signal parameters

Maximum half-wave amplitude of the pulse, V	$AS_{max} = 140$	Lower band frequency at the -3 dB level, kHz	FS ₁ = 54.2
Pulse duration at the -14 dB, msec	$TS_{14dB} = 54.3$	Upper band frequency at the -3 dB level, kHz	FS ₂ = 68.2
Maximum spectrum frequency, kHz	$FS_{max} = 61.0$	Average band frequency at the -3 dB level, kHz	FS _c = 61.0
Relative frequency band at the -3 dB level, %	PS _{3dB} = 23	Average compound band frequency at the -3 dB level, kHz	FS _g = 60.8